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Abstract

We estimate the laser intensity in each zone by summing contribu-
tions from each ray, resolving the sums per beam for a set of beams.
These zonal beam intensities are used to compute the cross-beam en-
ergy transfer between each beam and the ray as it traverses the zone.
The ray trace computation is iterated until the intensities converge.
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1 Power Deposition By Inverse Bremsstrahlung

Because rays are simply curves in space, they carry no information about
radiation intensity or spatial extent transverse to their direction. Their state
is completely defined by their frequency, velocity and power, the latter two
attributes of which are, in general, spatially dependent. The power of an
electromagnetic wave is depleted as the oscillatory energy it imparts to elec-
trons is randomized by collisions, the inverse-bremsstrahlung process. The
rate of energy loss is given by well-known formula

νib =
ne

nc

νei, (1)

where

νei =
4

3

(

2π

me

)1/2
neZe4 ln Λ

T
3/2
e

(2)

is the electron-ion collision rate. As a ray traverses a zone its power
decreases with time:

P (∆t) = P (0) exp{−
∫ ∆t

0

dt νib(~x(t))} (3)

∆t is the time required to traverse the zone, ~x(t) is given by

~v(∆t) = ~v0 −
c2

2nc

〈~∇ne〉 ∆t, (4)

~x(∆t) = ~x0 + ~v0 ∆t − c2

4nc

〈~∇ne〉(∆t)2, (5)

and ~x0, ~v0 are the entry position and velocity. Note:

|~v0| = vg = cη = c
√

1 − ne/nc. (6)

Because νib can be a strongly non-uniform function of position within
a zone, care must be taken in computing the integral in (3). With the
approximation

ne(~x) = 〈ne〉 + 〈~∇ne〉 · (~x − 〈~x〉) + O(ǫ2) (7)
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where 〈·〉 denotes a zone average for ne(~x(t)) and similar linear approxi-

mations for Te, and the gradients 〈~∇ne〉 and 〈~∇Te〉, the integrand becomes

νib(~x(t)) = ν0
(1 + Ut + Rt2)2

(1 + Wt + St2)3/2
, (8)

where

U =
~v0 · 〈~∇ne〉

ne0

,

W =
~v0 · 〈~∇Te〉

Te0

,

R = −c2

4

〈~∇ne〉 · 〈~∇ne〉
ncne0

,

S = −c2

4

〈~∇ne〉 · 〈~∇Te〉
ncTe0

. (9)

The quantities

ν0 ≡ 4

3

(

2π

me

)1/2
Ze4

nc

n2
e0 ln Λ0

T
3/2
e0

, (10)

ne0 ≡ 〈ne〉 + 〈~∇ne〉 · (~x0 − 〈~x〉), (11)

Te0 ≡ 〈Te〉 + 〈~∇Te〉 · (~x0 − 〈~x〉), (12)

and ln Λ0 are defined at the zone entry point. The integral can be eval-
uated in closed form, but the result is not computationally simple enough
to be useful, nor warranted on accuracy grounds. A more efficient approach
with sufficient accuracy is Gaussian quadrature:

∫ ∆t

0

dt νib(~x(t)) = ν0
∆t

2

Ng
∑

i=1

wi
(1 + Uti + Rt2i )

2

(1 + Wti + St2i )
3/2

, (13)

where Ng is the order of the integration scheme, and wi the i-th Gaussian
weight. The evaluation times are given by ti = (ξi + 1)∆t/2, with ξi the i-th

Gaussian abscissa.
The rate at which energy is deposited in the electrons in the zone is

P (0) − P (∆t), which can be used as a source term in an electron energy
equation.
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2 Laser Field Intensity

In addition to providing a source for electron energy transport, the laser-
plasma interaction model can also furnish a momentum source by way of
ponderomotive effects, which depend on the laser-field energy density and its
gradient. The contribution of a single ray to the intensity of the laser field in a
zone can be computed as Ir = Pτr/∆V , where τr = (

∫

cds/vg)r = (
∫

ds/η)r

is the time it takes the ray to cross the zone, ∆V is the zone volume and P
is the time-averaged power

P =
1

τ

∫ τ

0

dτ ′P (τ ′) (14)

with P (τ) given by (3),(13). Note:τ has length units since it is time
scaled by c. In HYDRA, we use the Gaussian quadrature result to obtain a
cell average νib for each ray, then evaluate (14) directly as

P =
1

τ

∫ τ

0

dτ ′P (τ ′) = P (0)
1 − exp(−νibτ)

νibτ
(15)

so that for each ray

Ir = Pτr/∆V = P (0)
1 − exp(−νibτ)

νib∆V
. (16)

For small values of νibτr, Ir reduces to

lim
νibτr→0

Ir = P (0)(1 − νibτr

2
)

τr

∆V
(17)

The total intensity for all rays traversing the cell is then just the sum

I =
∑

r

Ir. (18)

3 Cross Beam Coupling

Michel’s equations (6) and (7) are
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∂

∂z
|a1|2 = 2ℜ(

−i∆k2Fχ,1

8k1

)|a1|2|a2|2 (19)

∂

∂z
|a2|2 = 2ℜ(

−i∆k2Fχ,2

8k2

)|a2|2|a1|2 (20)

with ∆k2 = |~k1 − ~k2|2, ~k1 = η1
~kv

1 ,
~k2 = η2

~kv
2 and

Fχ,1 =
χe(1 + χi)

1 + χe + χi

,1 , (21)

and ~kv are the beam vacuum wave-numbers and χe(∆k, ∆ω, ne, Te) and
χi(∆k, ∆ω, ni, Ti) are the electron and ion susceptibilites which we’ll come
to presently.

Writing

2ℜ(
−i∆k2Fχ,1

8k1

) =
∆k2

4k1

ℑ(
χe(1 + χi)

1 + χe + χi

),1 (22)

=
∆k2

4k1

ℑ(χe)(1 + 2ℜ(χi) + |χi|2) + ℑ(χi)|χe|2
|1 + χe + χi|2

,1 (23)

=
∆k2

4k1

ℑ(χe)(1 + 2ℜ(χi) + |χi|2) + ℑ(χi)|χe|2
1 + |χe|2 + |χi|2 + 2ℜ(χe + χi + χeχ⋆

i )
,1 (24)

= C12 (25)

we can cast (19), (20) in the form

∂

∂z
|a1|2 = C12|a1|2|a2|2 (26)

∂

∂z
|a2|2 = C21|a2|2|a1|2. (27)

In terms of the beam intensities α−1
1,2|a1,2|2 ≡ I1,2 with

α−1
1,2 =

ǫ0

2
(
(mec

2)

e
)2kv

1,2ω1,2
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∂

∂z
α1I1 = C12α1I1α2I2 (28)

∂

∂z
α2I2 = C21α2I2α1I1. (29)

Alternatively, with vg = cη = c2k/ω and ds = ηdτ to measure path length
along rays

∂

∂τ1

I1 = η1α2C12 I2I1 (30)

∂

∂τ2

I2 = η2α1C21 I1I2. (31)

Accounting for uncorrelated polarizations modifies (30),(31) slightly to
give

∂

∂τ1

I1 = p12η1α2C12 I2I1 (32)

∂

∂τ2

I2 = p21η2α1C21 I1I2 (33)

where

p12 = p21 =
1

4
(1 + cos2 θ12)

and θ12 is the angle between the beam wave-vectors

cos θ12 =
~k1 · ~k2

|~k1||~k2|
.

3.1 Evaluation of Coupling Coefficients

The coupling coefficients C12, C21 require evaluation of the electron and ion
susceptibilites χe, χi with respect to the beat wave ion acoustic wave which
couples the two beams and mediates the energy transfer. χe, χi are given by
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χe,1 =
−1

2(kλDe)2
Z ′

(

ω2 − ω1 − (~k2 − ~k1) · ~V√
2ωpekλDe

)

(34)

≡ αeZ
′(βe), (35)

χi,1 =
∑

s

−1

2(kλDis)
2
Z ′

(

ω2 − ω1 − (~k2 − ~k1) · ~V√
2ωpiskλDis

)

(36)

=
∑

s

(

nisTeZ
2
is

neTis

) −1

2(kλDe)2
Z ′

(
√

µisTe

Tis

ω2 − ω1 − (~k2 − ~k1) · ~V√
2ωpekλDe

)

(37)

≡
∑

s

(

nisTeZ
2
is

neTis

)

αeZ
′(

√

µisTe

Tis

βe). (38)

with k2 = |~k2 − ~k1| throughout, µis = mis/me and Z ′(x) for real x is

Z ′(x) = −2

(

1 + xe−x2

(

i
√

π − 2

∫ x

0

dt et2
))

. (39)

Using the definition for Zeff

Zeff ≡
∑

s nisZ
2
is

∑

s nisZis

=

∑

s nisZ
2
is

ne

a possible approximation for χi,1 when Tis ∼ Ti and µis is suitably averaged
is given by the expression

χi,1 =
∑

s

(

nisTeZ
2
is

neTis

)

αeZ
′(

√

µisTe

Tis

βe) (40)

∼ Zeff
Te

Ti

αeZ
′(

√

µiTe

Ti

βe). (41)

ℜ(Z ′(x)) is even with respect to x while ℑ(Z ′(x)) is odd;

ℜ(Z ′(x)) = ℜ(Z ′(−x)) (42)

ℑ(Z ′(x)) = −ℑ(Z ′(−x)). (43)
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The expansion for Z ′(x) for small x is

ℜ(Z ′(x)) = −2(1 − 2xD(x)) (44)

ℑ(Z ′(x)) = −2
√

πxe−x2

. (45)

with the Dawson Function D(x) = −D(−x)

D(x) = x − 2

3
x3 +

22

5 · 3x5 − 23

7 · 5 · 3x7 + . . . (46)

=
∞

∑

n=0

(−)n 22nn!

(2n + 1)!
x2n+1 (47)

=
∞

∑

n=1

D2n−1x
2n−1 (48)

and

D2n−1 = D2(n−1)−1
−2

2(n − 1) − 1)
.

For large argument the expansion for Z ′(x) is

ℜ(Z ′(x)) ∼ 1

x2
+

3

2x4
+

3 · 5
4x6

+ . . . (49)

ℑ(Z ′(x)) ∼ 0 (50)

A fast algorithm for computing the Dawson Function D(x) can be found
in the appendix.

3.2 Integration Into Ray Trace Algorithm

Representing (84), (85) in terms of the ray powers using as before Ir =
P rτr/∆V , where τr = (

∫

ds c/vg)r = (
∫

ds/η)r for each ray, we write for rays
(r1, r2) in beams (b1, b2)

∂

∂τ1

∑

r1

P r1τr1|2 = α2η1p12C12

∑

r1

P r1τr1

∑

r2

P r2τr2/∆V (51)

∂

∂τ2

∑

r2

P r2τr2|1 = α1η2p12C21

∑

r1

P r1τr1

∑

r2

P r2τr2/∆V (52)
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noting here that the beam intensities in each of these equations represent
a sum over all rays of that beam transiting through the zone. For more than
two beams, the more general form of (51), for example, would be

∂

∂τ1

∑

r1

P r1τr1 =
∑

q



αqη1p1qC1q

∑

r1

P r1τr1

∑

rq

P rq
τrq



 /∆V, (53)

where the sum over q includes all beams with intensities in the zone.
Integrating (51),(51) along a single ray in the zone we get the power transfer
relations

δP r1|2 = α2η1p12C12 P r1τr1I2 (54)

δP r2|1 = α1η2p12C21 P r2τr2I1. (55)

We note that due to (42),(43) the cross-beam power transfers for beams
(b1, b2) from (54), (55) are related by

∑

r1
δP r1|2

∑

r2
δP r2|1

=
α2η1C12

α1η2C21

= −α2η1k2

α1η2k1

= −λv
2

λv
1

= −ω1

ω2

(56)

leading, after summing over the rays traversing the zone to the conserva-
tion relation

∆P12λ
v
1 = −∆P21λ

v
2. (57)

From (57) we can represent the power transferred to the ion acoustic wave
to be

∆P ia = ∆P12 + ∆P21 = ∆P12

(

1 − ω2 − (~k2 − ~k1) · ~V

ω1

)

. (58)

We include the Doppler shift to account for heat flow to the plasma
through the ion acoustic wave damping. The momentum transfer due to
cross beam transfer is accounted for implicitly in the ray trace algorithm
through the ponderomotive terms. In this way directed energy added to the
plasma through the ponderomotive forces and heat flow due to damping of
the ion acoustic ewaves should enter the total energy balance correctly.



12

It is algorithmically convenient to symmetrize (58) per ray to simplify the
accumulation over rays of the total power transferred to ion acoustic waves
due the cross-beam power transfers for beams (b1, b2). We do this as follows:

δP
ia

r1
|2 =

1

2
δP r1|2

(

1 − ω2 − (~k2 − ~k1) · ~V

ω1

)

(59)

δP
ia

r2
|1 =

1

2
δP r2|1

(

1 − ω1 − (~k1 − ~k2) · ~V

ω2

)

. (60)

4 Intensity Iteration Algorithm

Solving equations (53) self-consistently in Hydra’s LZR module requires an
iteration scheme since the intensities and the ray powers are interdependent.
The rays must be traced each cycle to determine the zonal intensities. On
the nth iteration, we can adjust the zonal ray power depletion due to inverse
Bremsstrahlung to include the cross beam coupling by

νn
r1
→ νibr1

−
∑

q

αqp1qη1C1qIq
n−1 = νibr1

−
∑

q

νn−1
1q . (61)

The intensities Iq
n−1 here are inaccurate since they have been computed

in the previous ray tracing iteration. The adjustment must be iterated to
convergence. In each iteration we adjust the depletion modified by the cross
beam coupling along all ray paths as described in (61). The zonal intensities
are recalculated during each iteration by accumulating the contributions for
each ray in each beam as in (18), but using (61) to include the cross beam
coupling. Thus, for example, the beam intensity in a zone due to beam
bq that we use for the nth iteration is the sum of the contributions to that
intensity of all the beam bq rays traversing that zone at iteration count n−1,
viz.

Iq
n−1 =

∑

rq

Iq
n−1
rq

=
∑

rq

P
n−1

rq
τrq

/∆V. (62)

The total zonal ray power change is then given by
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∆P
n−1

r1
= P

n−1

r1
(0)(1 − exp (−

∫ τr1

0

dτ νibr1
+ τr1

∑

q

νn−1
1q ). (63)

Dropping the superscript n−1 for ease of notation, we have the zonal ray
power depletion due to inverse bremsstrahlung for ray r1 is

δP r1|ib = ∆P r1

−νibr1

−νibr1
+

∑

q′ ν1q′
(64)

with

νibr1
=

1

τr1

∫ τr1

0

dτ νibr1
(τ).

The zonal power transferred due to cross beam coupling of ray r1 with
beam bq is

δP r1 |q = ∆P r1

ν1q

− 1
τr1

∫ τr1

0
dτ νibr1

+
∑

q′ ν1q′
(65)

and the associated power transferred to the ion acoustic wave, by (58), is

δP
ia

r1
|q =

1

2
δP r1|q

(

1 − ωq − (~kq − ~k1) · ~V

ω1

)

(66)

=
1

2
∆P r1

ν1q

− 1
τr1

∫ τr1

0
dτ νibr1

+
∑

q′ ν1q′

(

1 − ωq − (~kq − ~k1) · ~V

ω1

)

.

(67)

To get the total cross beam power transfer between beams (bq, bq′) we
need only sum the contributions in (65) appropriately:

∆P qq′ =
∑

cellsqq′

∑

rq

δP rq
|q′ . (68)

In (68) the sum over cells includes all cells traversed by rays from both
beam bq and bq′ simultaneously. Note that the rq ray bq coupling for any cell
in the set cellsqq′ to beam bq′ denoted by ∆P qq′ in (68) includes all traversals
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by all rays in beam bq′ for that cell, as shown in (62); ie. all rq′ rays in beam
bq′ contribute to the intensity Iq′ for the coupling.

From energy conservation, our iteration scheme converges when

∆P qq′ + ∆P q′q = ∆P
ia

qq′ = ∆P
ia

q′q. (69)

This condition is a useful check to verify the computation.

4.1 Intensity Iteration Algorithm Acceleration

In the earliest implementations of the intensity iteration scheme the entire
ray tracing computation was redone for each iteration of the intensities, re-
computing the cross beam power transfer coefficients for each iteration for
those cells illuminated by more than one beam group. A series of improve-
ments have followed the initial development to streamline and accelerate the
computation. In order of their implementation they are: (1) Compute ray
initialization (ray entry calculation) only once per cycle; (2) Compute ray
geometry and recompute the cross beam power transfer coefficients for a
limited number of iterations, LZR XBET iter lite >= 0, saving the essential
geometric and coefficient data for further iteration, rescaling coefficients by
updated intensities; (3) Iterate only until a prespecified energy conservation
tolerance is met, within a maximum iteration limit; (4) Save and reset inten-
sity state across cycles as a preconditioning scheme for subsequent iterations
LZR XBET istate(0, 1).

Each of these 4 improvements have been effective in reducing the compu-
tational load of the XBET calculation.

4.2 Local Wavevector LZR XBET klocal

Effects of refraction on cross beam power transfer are modeled more precisely
by specifying the wavevector associated with beam group resolved intensities
on a per cell basis. The earliest implementations took the wavevector direc-
tion to be a beam group constant. Setting parameter LZR XBET klocal(0, 1)
causes each iteration to accumulate an intensity weighted wavevector direc-
tion for each beam group in each cell. These quantities are used for any coef-
ficient recomputation requested and they are saved and reset across cycles as
part of the preconditioning scheme for subsequent iterations LZR XBET istate(0, 1).
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5 Saturation Model

Michel suggests a saturation model in which the plasma wave amplitude
driven by each beam pair interaction is limited from above by the value
|δn/ne| = LZR XBET saturation ∼ 4 × 10−4. The plasma wave amplitude
associated with beams (q, q′) by Michel’s equation (33) is

∣

∣

∣

∣

δn̂e

ne

∣

∣

∣

∣

q,q′
=

√
pqq′ |Fχ|q,q′

(

∆k2c2

2ω2
pe

)

√

aqIq αq′Iq′ (70)

≡ Cne

qq′

√

IqIq′ . (71)

Using (70) to restructure (54) we have the expression

νqq′ ≡
∂ ln δP rq

|q′
∂τ

(72)

= αq′ηqpqq′Cqq′Iq′ (73)

=

∣

∣

∣

∣

δn̂e

ne

∣

∣

∣

∣

q,q′
Qq,q′ (74)

= Cne

qq′

√

IqIq′ CQ
qq′

√

Iq′/Iq (75)

where

Cne

qq′ =
√

pqq′aqαq′

(

∆k2c2

2ω2
pe

)

|Fχ|q,q′ (76)

and

CQ
qq′ = ηq

√

pqq′
αq′

aq

(

ω2
pe

2kqc2

) ℑ(Fχq,q′
)

|Fχ|q,q′
(77)

and all Iq are taken at the previous iteration, Iq
n−1.

Since (70) is unchanged by (q, q′) → (q′, q) it is evident that

∣

∣

∣

∣

δn̂e

ne

∣

∣

∣

∣

q,q′
=

∣

∣

∣

∣

δn̂e

ne

∣

∣

∣

∣

q′,q

. (78)

By a similar argument as that leading to (56) we have that
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Qq,q′

Qq′,q

= −ωqIq′

ωq′Iq

. (79)

We implement the saturation model by requiring that in the sum over q′

in (73) each term observe the limit that |δn̂e/ne|q,q′ is the lesser of the RHS
of (70) or a fixed saturation threshold St ∼ 4 × 10−4. So (73) becomes

νqq′ =

∣

∣

∣

∣

δn̂e

ne

∣

∣

∣

∣

q,q′
Qq,q′ = Cne

qq′

√

IqIq′ CQ
qq′

√

Iq′/Iq (80)

= Cne

qq′ C
Q
qq′Iq′ ⇐⇒ Cne

qq′

√

IqIq′ < St (81)

= St CQ
qq′

√

Iq′/Iq ⇐⇒ Cne

qq′

√

IqIq′ >= St

(82)

The saturation model uses the same iteration algorithm described previ-
ously.

6 Quasi-2D Cross Beam Energy Transfer

Hydra supports a quasi-2D ray tracing model often used in concert with the
rotmeshik command and jx = 2 which automatically sets the bm axisymmetry

parameter. In this model the constant azimuthal angle surfaces j = 1, 2
are considered symmetry planes and all rays are specularly reflected there.
Beams can be specified in the same general way as in the 3D case, but for pur-
poses of ray initialization, all 3D rays are rotated so they are launched from
the mid-plane of the cylindrical wedge between the j = 1, 2 (planar) surfaces.
As rays are traced, the azimuthal coordinate of the ray in the 3D space is
computed, but not used directly. The 2D ray representation remains within
the wedge. One can think of the 2D ray as the 3D ray folded at the j = 1, 2
boundaries. For the quasi-2D cross beam energy transfer computation, it is
not sufficient solely to identify the beam group of the ray segments traversing
a given cell for coupling as in the 3D calculation. The folding procedure used
to map all ray segments into the 2D wedge seems to bring together in each
cell rays which are rotated in azimuth in the 3D world and thus may not
be interacting at all. Reconstructing the actual 3D rotation corresponds to
accumulating the initial ray rotation into the wedge mid-plane and each of
the rotations corresponding to each reflection at a symmetry boundary.
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6.1 LZR XBET extrude

The situation is rectified by calculating the coincidence of the 3D azimuth
of the ray with the 3D beam crossection of the beam group the ray may be
interacting with in the cell in question. There are two methods used for this
purpose selected for by parameter LZR XBET extrude (0,1). Historically the
first method implemented, chosen by LZR XBET extrude (0), is approximate
and costly. It estimates the overlap of beam groups pairwise from a heuris-
tic geometric argument then applies this overlap factor on a per ray basis.
LZR XBET extrude (1) is superior in virtually every way. In practice, the
default LZR XBET extrude (1) is the preferred model. A brief description of
method (1) follows; method (0) is described in the Appendix.

LZR XBET extrude (1) creates an azimuthally extruded pseudo-mesh to
track the 3D rays and compute their cross-beam energy transfer interaction.
The results are identical to those for the full 3D calculation corresponding
to an exactly axisymmetric version of the 2D problem generated by rotating
the mesh about the z-axis. The perceived need for excessive memory use
with model LZR XBET extrude (1) was the reason for first developing the
model LZR XBET extrude (0). To overcome the memory limitation all 3D
data are packed using index indirection to track data only in illuminated
cells. This can lead to large packing (compression) ratios since typically a
small fraction of the mesh is illuminated by each beam and an even smaller
fraction is illuminated by more than one beam concurrently. The packing
scheme is dynamic: it may change during iteration and generally changes
across cycles. It is used for fully 3D computations as well as the quasi-2D
case. It is saved and reinstated when usng LZR XBET istate(1) and must be
merged when using LZR replicates > 1.

7 Hydra Implementation

The cross beam energy transfer model is enabled when the parameter

LZR XBET > 0.

Choosing the value (2) will cause the ion acoustic wave power to be locally
deposited directly to the ion fluid. A value (1) will deposit this power to
the electron fluid. Each group of beams acting as a unit for purposes of the
XBET (Cross Beam Energy Transfer) coupling should have a unique beam gp
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modifier. The beam geometries, including beam wave-vectors, beam axes,
spot sizes at best focus and frequencies for all beams in each beam group
are averaged together for purposes of the coupling computation. Thus, one
might choose to specify each beam in a quad separately (each with its own
superg3d or arbeampattern card) conjoined with the same beam gp modi-
fier, or alternatively, an equivalent beam quad could be specified as a single
beam.

The beam group frequency tuning is specified by the optional modifier
beam frmult, fq. This modifier multiplies the frequency (harmonic) specifier
hm on the laserbeam card and is fixed for the entire run. Time/value control
of the frequency for each laserbeam card, ftv, is also provided separately
with the nfrtimes card. The frequency for each beam group is thus the
neodymium fundamental ω0 multipled by the per laserbeam time dependent
multiplier ftv and the beam group multiplier fq,

ωq = ω0hmftvfq.

ftv and fq both default to 1 if they are not specified.
Hydra also provides the option to limit the coupling sums (53) to a pre-

specified set of interacting beams by setting an additional modifier, XBET gp id,
for each beam. This optional modifier to the superg3d or arbeampattern

card is input similarly to the other optional modifiers beam id, beam gp,
beam frmult and beam label. All beams with the same XBET gp id are in-
cluded in the group sum, for that XBET gp id group. This can be useful, for
example, to decouple oppositely pointed beams for purposes of the coupling
calculation. Through this mechanism, beams whose interaction can be safely
ignored may be excluded from each group sum (53), simplifying the calcula-
tion. The default, no beam having XBET gp id set, will cause all beams to
be considered potentially interacting with each other.

To minimize the memory required to implement cross beam energy trans-
fer, only the coefficients Cne

qq′ and CQ
qq′ required for the sum over beam transfer

rates in (61) for any given cell in any given cycle are computed and stored.
The symmetries (79) and (80) are useful for compact storage of these coef-
ficients which do not change as the ray tracing is iterated to determine the
self consistent intensity. Only the values for q > q′ are needed.

For each interaction group with a number Ng > 1 beams interacting in
the cell, the total number of coefficients to be stored for that cell for the
cycle’s iteration is Ng(Ng − 1)/2.
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7.1 LZR replicates

The LZR module in Hydra supports a procedure designed to optimize per-
formance when scaling to large numbers of processes in a parallel computing
environment. The parameter LZR replicates can be chosen to replicate the
mesh related date and distribute the replicates equally among the active pro-
cesses. The rays are distributed as well generating a statistically equivalent
representative ray ensemble in each replicate. One may consider each repli-
cate in this mode as an independent realization unless LZR XBET > 1. In that
case the beam group intensities are accumulated across replicates with each
iteration so that all rays are interacting as a single realization. The accu-
mulation across replicates as well as the saving and reinstating of intensity
state across cycles requires merging and saving the intensity packing scheme
described in the previous section.

8 Stimulated Raman Scattering

Stimulated Raman scattering of laser light can be an important loss mech-
anism for hohlraums. Plasma wave (Langmuir) noise present in the illumi-
nated hohlraum can interact with incident light to produce backscattered
light which resonantly amplifies when the Langmuir frequency is the beat
frequency of the pump (forward moving) and backscattered (reverse moving)
waves. The interaction coupling calculation is similar to the cross beam cou-
pling with the wave-vector directions of pump and scattered wave oppositely
directed and the frequencies differing by the plasma frequency at resonance.

In reality there is a spectrum of backscattered waves observed correspond-
ing to a range of plasma conditions where amplification is large enough to
produce an observable signal. Furthermore, the backscattered waves refract
differently from the pump beam due to their down-shifted frequencies. Both
these facts complicate the modeling of SRS. Some simplifying approximations
will serve to make the problem tractable without doing too much damage to
the physics. (1) We ignore the difference of frequency between pump and
scattered rays when computing the effect of refraction on ray trajectories; we
pair pump and scattered rays along the same trajectories. (2) We choose a
frequency and power for the scattered ray based on experimental data.

The basic result of these approximations will be to give a better estimate
for the power deposition in the plasma both from inverse Bremsstrahlung
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on pump and scattered waves and Landau damping on the driven Langmuir
waves. The latter can be handled as a thermal power source or as a supra-
thermal electron heat source.

The equations we use will be modifications of (30),(31)

∂

∂τ1

I1 = p12η1α2C12 I2I1 (83)

∂

∂τ2

I2 = p21η2α1C21 I1I2 (84)

in which the pump and Raman scattered wavevectors are oppositely directed
and θ12 = π so

p12 = p21 =
1

4
(1 + cos2 θ12) =

1

2
.

Letting 1 → p represent the pump rays and 2 → R represent the Raman
reflected rays ∆k2 = |~kp− ~kR|2 = (kp +kR)2 where ~kv

p,R are the beam vacuum

wave-numbers, ~kp = ηp
~kv

p ,
~kR = ηR

~kv
R. Since for SRS χi ≪ 1 we adjust (21)

as

Fχ(p,R)
=

χe,(p,R)

1 + χe,(p,R)

(85)

with χe,(p,R)(∆k, ∆ω, ne, Te) the electron susceptibilities for the pump and
Raman rays. Adapting (25) we can write

∂

∂τp

Ip =
1

2
ηpαRCpR IRIp (86)

∂

∂τR

IR =
1

2
ηRαpCRp IpIR (87)

with

CpR =
∆k2

4kp

ℑ(χe,p)

1 + |χe,p|2 + 2ℜ(χe,p)
(88)

CRp =
∆k2

4kR

ℑ(χe,R)

1 + |χe,R|2 + 2ℜ(χe,R)
. (89)

From (35), ignoring the Doppler shift relative to the frequency downscat-
ter shift we have
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χe,p =
−1

2(∆kλDe)2
Z ′

(

ωR − ωp√
2ωpe∆kλDe

)

(90)

≡ αe,pZ
′(βe,p) (91)

χe,R =
−1

2(∆kλDe)2
Z ′

(

ωp − ωR√
2ωpe∆kλDe

)

(92)

≡ αe,RZ ′(βe,R) (93)

≡ αe,pZ
′(−βe,p) (94)

The energy conservation for Raman scattering in our single frequency
SRS model is

∑

rp
δP rp

|R
∑

rR
δP rR

|p
=

αRηpCpR

αpηRCRp

= −αRηpkR

αpηRkp

= −λv
R

λv
p

= − ωp

ωR

= − 1

1 − ω∗

pe/ωp

(95)

where ω∗

pe = ωp − ωR is the electron plasma frequency at maximum gain
(pre-specified by experiment). This can be viewed as corresponding to (56)
for cross beam energy transfer: thus, as in (57)

∆PpRλv
p = −∆PRpλ

v
R. (96)

we can represent the power transferred to the Langmuir waves to be

∆PLr = ∆PpR + ∆PRp = ∆PpR

(

ω∗

pe

ωp

)

. (97)

With these definitions we can recast the electron susceptibilities as

χe,p = αe,pZ
′(−√

αe,p

ω∗

pe

ωpe

) (98)

χe,R = αe,pZ
′(
√

αe,p

ω∗

pe

ωpe

). (99)

The crux of the SRS calculation will be to evaluate the Raman gain for
each ray’s cell traversal

νSRSrp
=

1

τrp

∫ τrp

0

dτ νSRSrp
(τ) (100)
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with

νSRSrp
=

1

δP rp

∂

∂τp

δP rp
=

1

2
ηpαRCpR IR

and, likewise

νSRSrR
=

1

δP rR

∂

∂τR

δP rR
=

1

2
ηRαpCRp Ip.

For purposes of computing the cell ray integral (101) we take the quan-
tities ηp,R and αp,R to be constant in the cell and constant across intensity
iterations. The quantities Ip and IR are also treated as cell constants, but
will generally vary across intensity iterations. The variation along rays which
requires special care comes from the variation of αe,p ∼ ne/Te and ωpe ∼

√
ne

in (100) which can produce resonance in CpR and CRp near ωpe ∼ ω∗

pe. We
use a rational function integration techique suggested by Ed Williams and
detailed by D. Strozzi in Appendix D to compute the ray integral per cell
traversal once per cycle; the result is stored with the intensity removed along
the ray trajectory, then rescaling with each intensity iteration for computa-
tional efficiency. It is necessary to compute only one of νSRSrp

, νSRSrR
per

cell traversal using the scaling relation

νSRSrR
= −νSRSrp

ωR

ωp

Ip

IR

.
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A Normalizations

Michel’s normalization for intensity, α−1|~a|2 = I in units of W/cm2, derives
from the specification of the beam vector potential as

~A ∼ mec
2

2e
~a, (101)

~E = −1

c

∂ ~A

∂t
(102)

I =
1

2
ǫ0vg| ~E|2 (103)

so that α−1 evaluates to

α−1 = kvω
ǫ0

2
(
(mec

2)

e
)2 W

cm2
(104)

α−1 = 1.2185 × 1018 λ2
0

λ2

W

cm2
(105)

α−1 =
λ2

0

λ2
(106)

∗ 1

2
8.854 × 10−12 C2

Jm
(107)

∗ (
.511 × 106eV

1.602176 × 10−19C
)2 (108)

∗ 3 × 1010 cm

sec
(109)

∗ (
2π

1.06 × 10−4cm
)2 (110)

∗ (
J

6.24151 × 1018eV
)2 (111)

∗ 1m

100cm
(112)

(113)

The λ values are the vacuum wavelengths with λ0 the 1.06µm value.
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B Dawson’s Fuction

#include <math . h>

#define nmax 6
#define h 0 .4
#define a1 ( 2 . 0 / 3 . 0 )
#define a2 0 .4
#define a3 ( 2 . 0 / 7 . 0 )
double DawsonF(double x )
// Returns Dawson ’ s i n t e g r a l

// D(x) =
∫

x

0
et

2

dt/ex
2

f o r any r e a l x
{

int i , n0 ;
double d1 , d2 , e1 , e2 , sum , x2 , xp , xx , ans ;
stat ic double c [ nmax+1] ;
// Flag i s 0 i f we need to i n i t i a l i z e , e l s e 1 .
stat ic int i n i t = 0 ;
i f ( i n i t == 0) {

i n i t =1;
for ( i =1; i<=nmax ; i++) {

double q = h ∗ (2 . 0∗ i −1 .0 ) ;
c [ i ]=exp(−q∗q ) ;

}
}
i f ( f abs (x ) < 0 . 2 ) { // Use s e r i e s expansion .

x2=x∗x ;
ans=x∗(1.0−a1∗x2∗(1.0−a2∗x2∗(1.0−a3∗x2 ) ) ) ;

} else { // Use sampling theorem rep r e s en t a t i on .
xx=fabs (x ) ;
n0=2∗( int ) ( 0 . 5∗ xx/h+0.5) ;
xp=xx−n0∗h ;
e1=exp (2 . 0∗ xp∗h ) ;
e2=e1∗ e1 ;
d1=n0+1;
d2=d1−2.0 ;
sum=0.0;
for ( i =1; i<=nmax ; i++,d1+=2.0 ,d2−=2.0 , e1∗=e2 )

sum += c [ i ] ∗ ( e1/d1+1.0/(d2∗ e1 ) ) ;
// Constant i s 1 = 1/

√
π

ans =0.5641895835∗SIGN( exp(−xp∗xp ) , x )∗sum ;
}
return ans ;

}
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C LZR XBET extrude (0)

For the 2D XBET computation chosen by LZR XBET extrude (0), the beam
group illuminated volume, its envelope, is modeled by an elliptical cylinder
whose axis is aligned with the beam group direction. The crossection of the
cylinder is given at the best focus by the best focus spot sizes. Along the
beam axis, this crossection is expanded linearly as specified by the optical
aperture number of the lens, F , computed from the beam group divergence
angle, a2.

Beam group coincidence is approximated as the fractional overlap of the
two beam groups in the extrusion ring of the traversal cell around the z-axis.
This fraction, ǫqq′(r, z), is computed once per cycle for each cell where rays
from more than one beam group contibute to the intensity. For rings entirely
contained within a beam group envelope, all rays associated with that beam
group contibute to the intensity and the fractional overlap is 1.

Let the beam group pointing direction, q̂, launch point, p̂, and best focus,
~f , in the beam definition frame be

ẑb = q̂ = (q̂x, q̂y, q̂z) ≡ Rbẑ (114)

x̂b = Rbx̂ (115)

ŷb = Rbŷ (116)

~p = (px, pgy, pz) (117)

~f = (fx, fy, fz). (118)

Rotating the beam definition frame in azimuth Rφ gives

~p′ = Rφ~p (119)

~f ′ = Rφ
~f (120)

x̂′

b = RφRbx̂ (121)

ŷ′

b = RφRbŷ (122)

ẑ′b = q̂′ = Rφq̂ = (~p′ − ~f ′)/|(~p′ − ~f ′)| (123)

For a given cell center at ~xc = (rc, zc), for each beam group, the z-distance
from the z-plane at zc to best focus is

δzf = zc − f ′

z;
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the radius of the beam axis intersection with the z-plane is then

rbc = δzf tan(θ) + r′f .

The angle θ here is the beam group polar inclination, ẑ′b · ẑ and r′f =
√

f ′2
x + f ′2

y is the radius (distance from thez-axis) of the center of the fo-
cal spot. Given rbc, rc and the envelope for each beam group, two beam
groups (qq′) at a time, the overlap ǫqq′(rc, zc) can be computed for any cell.

One last consideration is the effective coupling strength. For the quasi-2D
calculation, ray powers are reduced by the relative size of the wedge, ∆φw/2π.
That is to say, the beam power is averaged over the entire cylinder. To
correct for this reduction in the coupling calculation, we amplify the coupling
strength by the inverse of the actual reduction in beam power due to this
averaging, namely Aq = 2π/∆φq, where ∆φq is the azimuthal extent of the
the beam group envelope along the extrusion ring of the traversal cell around
the z-axis. We set Aq = 1 if the entire ring is contained within the beam
envelope.

With these considerations, the 3D gain coefficients given in (73) are mod-
ified to

Cne

qq′ → Cne

qq′
∗ = Cne

qq′

√

(AqAq′ǫqq′ǫq′q) (124)

and

CQ
qq′ → CQ

qq′
∗

= CQ
qq′

√

(Aq′ǫq′q/Aqǫqq′). (125)

These changes lead directly to the 2D version of the saturation corrected
gain coefficients

νqq′ =

∣

∣

∣

∣

δn̂e

ne

∣

∣

∣

∣

q,q′
Qq,q′ = Cne

qq′
∗
√

IqIq′ CQ
qq′

∗

√

Iq′/Iq (126)

= Cne

qq′
∗ CQ

qq′
∗Iq′ ⇐⇒ Cne

qq′
∗
√

IqIq′ < St

(127)

= St CQ
qq′

∗

√

Iq′/Iq ⇐⇒ Cne

qq′
∗
√

IqIq′ >= St.

(128)
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D Strozzi’s Function

Referring to the current document, Eq. (87) governs the SRS reflected light
intensity:

1

IR

∂IR

∂τR

=
1

2
ηRαpCRpIp (129)

We take Ip to be given, i.e. pump depletion is not done self-consistently.
We drop the subscript R on τR. The RHS is then a known function of τ , and
the solution from τ = τ0 to τ1 is

IR(τ1) = IR(τ0) exp[G] G ≡
∫ τ1

τ0

1

2
ηRαpCRpIpdτ (130)

G is the SRS intensity gain exponent. To connect with the previous
notation, we define G = νSRS∆τ with ∆τ ≡ τ1 − τ0. If we assume Ip is
constant with respect to τ , we find

G = Ipg g ≡
∫ τ1

τ0

Γdτ Γ ≡ 1

2
ηRαpCRp (131)

g is independent of intensity and is just a function of plasma conditions.
It does not need to be re-computed with each intensity iteration. Plugging
in definitions, we obtain

Γ = Γ0ℑ
χ

1 + χ
= Γ0

ℑχ

|1 + χ|2 (132)

Γ0 ≡
(

1

8
kv

Rαp

)(

kv
p

kv
R

ηp + ηR

)2

(133)

χ = χe,R. The first parenthesis in Γ0 is independent of τ and contains
all the units. The second parenthesis, and the final fraction in Γ, are both
unitless and depend on τ .

We can use the ratint approach to rational function integrals developed
by Ed Williams to find g. For now, we treat Γ0 as constant, and assume we
know χ at τ0 and τ1 and that it varies linearly between these two points. We
use the second form of Γ and explicitly treat everything as real. One can also
use the first form and get an elegant answer with complex logs - assuming you
handle all the branch points right and have a complex log function available.
It is also convenient to use ǫ = 1 + χ instead of χ. We have
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g = Γ0gǫ gǫ ≡
∫ τ1

τ0

ǫi

ǫ2
r + ǫ2

i

dτ (134)

where ǫr = ℜǫ and ǫi = ℑǫ.
We wish to find gǫ given four real numbers: ǫr0, ǫr1, ǫi0, ǫi1. Put

ǫr = ǫr0 + u∆r, u ≡ τ − τ0

∆τ
, ∆r ≡ ǫr1 − ǫr0 (135)

and similarly for ǫi. Change variables to u to obtain

gǫ

∆τ
=

∫ 1

0

ǫi0 + u∆i

(ǫr0 + u∆r)2 + (ǫi0 + u∆i)2
du (136)

Re-arranging,

gǫ

∆τ
=

∫ 1

0

ǫi0 + u∆i

D0 + D1u + D2u2
du (137)

with

D0 ≡ ǫ2
r0 + ǫ2

i0 D1 ≡ 2 [ǫr0∆r + ǫi0∆i] D2 ≡ ∆2
r + ∆2

i (138)

Note that D2 ≥ 0. If D2 = 0, that means both ∆r and ∆i are zero,
D1 = 0 as well, and ǫ0 = ǫ1. Our linear interpolation within the zone means
ǫ is constant. We then have

gǫ

∆τ
=

ǫi0

ǫ2
r0 + ǫ2

i0

D2 = 0 (139)

We now treat the case D2 > 0. Multiply both sides by D2 to find

D2gǫ

∆τ
=

∫ 1

0

ǫi0 + u∆i

d0 + d1u + u2
du d0,1 ≡ D0,1/D2 (140)

Change variables to v = u + d1/2:

D2gǫ

∆τ
= (ǫi0 − ∆id1/2)J0 + ∆iJ1 Jj ≡

∫ v1

v0

vj

v2 + d2
3

dv j = 0, 1 (141)

with v0 = d1/2, v1 = 1 + v0, and d2
3 ≡ d0 − d2

1/4. Some algebra gives
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d3 =
∆iǫr0 − ∆rǫi0

D2

(142)

so that d2
3 is indeed non-negative. d2

3 as defined can have either sign, and
our answers correctly handle both cases, that is, they are really functions
just of |d3|.

For J0 we have

J0 =
1

d3

[

arctan
v1

d3

− arctan
v0

d3

]

(143)

Since arctan is odd, J0 has the same form if we change d3 to −d3. Also,

vj

d3

=
∆rǫrj + ∆iǫij

∆iǫr0 − ∆rǫi0

j = 0, 1 (144)

Note the j subscript in the numerator but 0 subscript in the denominator.
J1 gives the simple result

J1 = ln

∣

∣

∣

∣

ǫ1

ǫ0

∣

∣

∣

∣

= ln
ǫ2
r1 + ǫ2

i1

ǫ2
r0 + ǫ2

i0

(145)

Putting it all together, for D2 > 0,

D2gǫ

∆τ
= −∆r

[

arctan
∆rǫr1 + ∆iǫi1

∆iǫr0 − ∆rǫi0

− arctan
∆rǫr0 + ∆iǫi0

∆iǫr0 − ∆rǫi0

]

+∆i
1

2
ln

[

ǫ2
r1 + ǫ2

i1

ǫ2
r0 + ǫ2

i0

]

(146)


